.. _opt_example_dqm_map: ======================== Map Coloring: DQM Solver ======================== This example solves the same map coloring problem of the :ref:`opt_example_kerberos_map` example to demonstrate the `Leap `_ service's hybrid discrete quadratic model (:term:`DQM`) solver, which enables you to solve problems of arbitrary structure and size for variables with **discrete** values. See the :ref:`opt_example_kerberos_map` section for a description of the map-coloring constraint satisfaction problem (:term:`CSP`). The example of the :ref:`qpu_example_mapcoloring` section demonstrates direct usage of the quantum computer. Example Requirements ==================== .. include:: ../shared/examples.rst :start-after: start_requirements :end-before: end_requirements .. note:: This example requires a minimal understanding of the :term:`penalty model` approach to solving problems by minimizing penalties. In short, you formulate the problem using positive values to penalize undesirable outcomes; that is, the problem is formulated as an :term:`objective function` where desirable solutions are those with the lowest values. This is demonstrated in the `Leap `_ service's *Structural Imbalance* demo, introduced in the :ref:`qpu_example_and` section, and comprehensively explained in the :ref:`qpu_reformulating` section. Solution Steps ============== .. |workflow_section| replace:: :ref:`opt_workflow` .. include:: ../shared/examples.rst :start-after: start_standard_steps :end-before: end_standard_steps In this example, a DQM is created to formulate the problem and submitted to the `Leap `_ hybrid DQM solver, ``hybrid_discrete_quadratic_model_version``. Formulate the Problem ===================== This example uses the :std:doc:`NetworkX ` :func:`~networkx.readwrite.adjlist.read_adjlist` function to read a text file, ``usa.adj``, containing the states of the USA and their adjacencies (states with a shared border) into a graph. The original map information was found on `write-only blog of Gregg Lind `_ and looks like this:: # Author Gregg Lind # License: Public Domain. I would love to hear about any projects you use if it for though! # AK,HI AL,MS,TN,GA,FL AR,MO,TN,MS,LA,TX,OK AZ,CA,NV,UT,CO,NM CA,OR,NV,AZ CO,WY,NE,KS,OK,NM,AZ,UT # Snipped here for brevity You can see in the first non-comment line that the state of Alaska ("AK") has Hawaii ("HI") as an adjacency and that Alabama ("AL") shares borders with four states. >>> import networkx as nx >>> G = nx.read_adjlist('usa.adj', delimiter = ',') # doctest: +SKIP Graph G now represents states as vertices and each state's neighbors as shared edges. >>> states = G.nodes # doctest: +SKIP >>> borders = G.edges # doctest: +SKIP You can now create a :class:`dimod.DiscreteQuadraticModel` object to represent the problem. Because any planar map can be colored with four colors or fewer, represent each state with a discrete variable that has four *cases* (binary variables can have two values; discrete variables can have some arbitrary number of cases). For every pair of states that share a border, set a quadratic bias of :math:`1` between the variables' identical cases and :math:`0` between all different cases (by default, the quadratic bias is zero). Such as :term:`penalty model` adds a value of :math:`1` to solutions of the DQM for every pair of neighboring states with the same color. Optimal solutions are those with the fewest such neighboring states. >>> import dimod ... >>> colors = [0, 1, 2, 3] ... >>> dqm = dimod.DiscreteQuadraticModel() >>> for state in states: # doctest: +SKIP ... dqm.add_variable(4, label=state) >>> for state0, state1 in borders: # doctest: +SKIP ... dqm.set_quadratic(state0, state1, {(color, color): 1 for color in colors}) Solve the Problem by Sampling ============================= .. include:: ../shared/examples.rst :start-after: start_hybrid_advantage :end-before: end_hybrid_advantage Ocean software's :ref:`dwave-system ` :class:`~dwave.system.samplers.LeapHybridDQMSampler` class enables you to easily incorporate Leap's hybrid DQM solvers into your application. The solution printed below is truncated. >>> from dwave.system import LeapHybridDQMSampler ... >>> sampleset = LeapHybridDQMSampler().sample_dqm(dqm, ... label='SDK Examples - Map Coloring DQM') # doctest: +SKIP ... >>> print("Energy: {}\nSolution: {}".format( ... sampleset.first.energy, sampleset.first.sample)) # doctest: +SKIP Energy: 0.0 Solution: {'AK': 0, 'AL': 0, 'MS': 3, 'TN': 1, 'GA': 2, 'FL': 3, 'AR': 2, # Snipped here for brevity The energy value of zero above signifies that this first (best) solution found has accumulated no penalties, meaning no pairs of neighboring states with the same color. .. note:: The next code requires `Matplotlib `_\ . Plot the best solution. >>> import matplotlib.pyplot as plt # doctest: +SKIP >>> node_list = [list(G.nodes)[x:x+10] for x in range(0, 50, 10)] # doctest: +SKIP >>> node_list[4].append('ND') # doctest: +SKIP # Adjust the next line if using a different map >>> nx.draw(G, pos=nx.shell_layout(G, nlist = node_list), with_labels=True, ... node_color=list(sampleset.first.sample.values()), node_size=400, ... cmap=plt.cm.rainbow) # doctest: +SKIP >>> plt.show() # doctest: +SKIP The graphic below shows the result of one such run. .. figure:: ../_images/usa_map_dqm.png :name: USAMapColoring :alt: image :align: center :scale: 70 % One solution ``hybrid_discrete_quadratic_model_version1`` found for the USA map-coloring problem.